Community

AES Journal Forum

Transfer-Function Measurement with Maximum-Length Sequences

Document Thumbnail

A comprehensive analysis of transfer-function measurement based on maximum-length sequences (MLS) is presented. MLS methods employ efficient cross correlations between input and output to recover the periodic impulse response (PIR) of the system being measured. For perfectly linear noiseless systems, the PIR so obtained is shown to be identical to the system's response to a simple periodic square pulse. In the face of external noise and nonlinearities, the MLS approach is shown to be as robust as time-delay spectrometry (TDS). Like TDS, MLS methods are also capable of rejecting or selecting nonlinear (distortion) components when measuring weakly nonlinear systems. An MLS coherence function is defined that is not unlike the conference function usually associated with dual-channel FFT analyzers. Finally, a new low-cost instrument based on the IBM-PC makes MLS measurements generally available and affordable.

Authors:
Affiliations:
JAES Volume 37 Issue 6 pp. 419-444; June 1989
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society