AES Journal Forum

Efficient Diffraction Modeling Using Neural Networks and Infinite Impulse Response Filters

Document Thumbnail

Creating plausible geometric acoustic simulations in complex scenes requires the inclusion of diffraction modeling. Current real-time diffraction implementations use the Uniform Theory of Diffraction, which assumes all edges are infinitely long. The authors utilize recent advances in machine learning to create an efficient infinite impulse response model trained on data generated using the physically accurate Biot-Tolstoy-Medwin model. The authors propose an approach to data generation that allows their model to be applied to higher-order diffraction. They show that their model is able to approximate the Biot-Tolstoy-Medwin model with a mean absolute level difference of 1.0 dB for first-order diffraction while maintaining a higher computational efficiency than the current state of the art using the Uniform Theory of Diffraction.

JAES Volume 71 Issue 9 pp. 566-576; September 2023
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society