This work proposes a parametric model for just noticeable differences of unilateral differences in head-related transfer functions (HRTFs). For seven generic magnitude-based distance metrics, common trends in their response to inter-individual and intra-individual HRTF differences are analyzed, identifying metric subgroups with pseudo-orthogonal behavior. On the basis of three representative metrics, a three-alternative forced-choice experiment is conducted, and the acquired discrimination probabilities are set in relation with distance metrics via different modeling approaches. A linear model, with coefficients based on principal component analysis and three distance metrics as input, yields the best performance, compared to a simple multi-linear regression approach or to principal component analysis--based models of higher complexity.
Authors:
Doma, Shaimaa; Ermert, Cosima A.; Fels, Janina
Affiliation:
Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
JAES Volume 71 Issue 4 pp. 155-172; April 2023
Publication Date:
April 9, 2023
Download Now (1.0 MB)
This paper is Open Access which means you can download it for free.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.