Community

AES Journal Forum

HRTF Clustering for Robust Training of a DNN for Sound Source Localization

Document Thumbnail

This study shows how spherical sound source localization of binaural audio signals in the mismatched head-related transfer function (HRTF) condition can be improved by implementing HRTF clustering when usingmachine learning. A new feature set of cross-correlation function, interaural level difference, and Gammatone cepstral coefficients is introduced and shown to outperform state-of-the-art methods in vertical localization in the mismatched HRTF condition by up to 5%. By examining the performance of Deep Neural Networks trained on single HRTF sets from the CIPIC database on other HRTFs, it is shown that HRTF sets can be clustered into groups of similar HRTFs. This results in the formulation of central HRTF sets representative of their specific cluster.By training a machine learning algorithm on these central HRTFs, it is shown that a more robust algorithm can be trained capable of improving sound source localization accuracy by up to 13% in the mismatched HRTF condition. Concurrently, localization accuracy is decreased by approximately 6% in thematchedHRTF condition, which accounts for less than 9% of all test conditions. Results demonstrate that HRTF clustering can vastly improve the robustness of binaural sound source localization to unseenHRTF conditions.

Authors:
Affiliation:
JAES Volume 70 Issue 12 pp. 1015-1026; December 2022
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society