Community

AES Journal Forum

Buckling Dielectric Elastomer Transducers as Loudspeakers

Document Thumbnail

In recent decades, dielectric elastomers (DE) have emerged as a promising transducing principle for various applications. They promise to be lightweight, efficient, and affordable alternatives to conventional electrodynamic or piezoelectric transducers and show large deformations at fast rates. In this work a loudspeaker concept is proposed, which relies on the elastic instability of a DE membrane. A multilayered DE membrane is clamped in a circular ring. Upon applying a DC voltage, its area increases, and themembrane buckles up. A superimposed signal voltage induces vibration and generates sound. To model the device mechanically, a system of partial differential equations is derived from Hamilton's principle. The mechanical model is then coupled to the linear assumed electrical and acoustical domains. Static, dynamic, and acoustic experiments on buckling DE transducers of three different diameters (10, 15, and 20 mm) and different thicknesses (0.4mmto 0.6 mm) as multilayer configurations are conducted to validate the model. Sound pressure levels of about 70 dB above 1 kHz are reached. Small loudspeakers like this may find application in mobile or array systems.

Authors:
Affiliation:
JAES Volume 70 Issue 10 pp. 858-870; October 2022
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society