This paper analyzes the impact of signal phase handling in one of the most popular architectures for the generative synthesis of audio effects: variational autoencoders (VAEs). Until quite recently, autoencoders based on the Fast Fourier Transform routinely avoided the phase of the signal. They store the phase information and retrieve it at the output or rely on signal phase regenerators such as Griffin--Lim. We evaluate different VAE networks capable of generating a latent space with intrinsic information from signal amplitude and phase. The Modulated Complex Lapped Transform (MCLT) has been evaluated as an alternative to the Short-Time Fourier Transform (STFT). A novel database on beats has been designed for testing the architectures. Results were objectively assessed (reconstruction errors and objective metrics approximating opinion scores) with autoencoders on STFT and MCLT representations, using Griffin--Lim phase regeneration, multichannel networks, as well as the Complex VAE. The autoencoders successfully learned to represent the phase information and handle it in a holistic approach. State-of-the-art quality standards were reached for audio effects. The autoencoders show a remarkable ability to generalize and deliver new sounds, while overall quality depends on the reconstruction of phase and amplitude.
Authors:
Cámara, Mateo; Blanco, José Luis
Affiliations:
Information Processing and Telecommunication Center, Universidad Politécnica de Madrid, Madrid, Spain; Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain(See document for exact affiliation information.)
JAES Volume 70 Issue 9 pp. 731-741; September 2022
Publication Date:
September 12, 2022
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.