Spatial room impulse responses (SRIRs) capture room acoustics with directional information. SRIRs measured in coupled rooms and spaces with non-uniform absorption distribution may exhibit anisotropic reverberation decays and multiple decay slopes. However, noisy measurements with low signal-to-noise ratios pose issues in analysis and reproduction in practice. This paper presents a method for resynthesis of the late decay of anisotropic SRIRs, effectively removing noise from SRIR measurements. The method accounts for both multi-slope decays and directional reverberation. A spherical filter bank extracts directionally constrained signals from Ambisonic input, which are then analyzed and parameterized in terms of multiple exponential decays and a noise floor. The noisy late reverberation is then resynthesized from the estimated parameters using modal synthesis, and the restored SRIR is reconstructed as Ambisonic signals. The method is evaluated both numerically and perceptually, which shows that SRIRs can be denoised with minimal error as long as parts of the decay slope are above the noise level, with signal-to-noise ratios as low as 40 dB in the presented experiment. The method can be used to increase the perceived spatial audio quality of noise-impaired SRIRs.
Authors:
Hold, Christoph; Mckenzie, Thomas; Götz, Georg; Schlecht, Sebastian J.; Pulkki, Ville
Affiliations:
Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland; Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland; Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland; Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland; Media Lab, Department of Art and Media, Aalto University, Espoo, Finland; Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland(See document for exact affiliation information.)
JAES Volume 70 Issue 6 pp. 526-538; June 2022
Publication Date:
June 10, 2022
Download Now (895 KB)
This paper is Open Access which means you can download it for free.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.