AES Journal Forum

Object-Based Six-Degrees-of-Freedom Rendering of Sound Scenes Captured with Multiple Ambisonic Receivers

Document Thumbnail

This article proposes a system for object-based six-degrees-of-freedom (6DoF) rendering of spatial sound scenes that are captured using a distributed arrangement of multiple Ambisonic receivers. The approach is based on first identifying and tracking the positions of sound sources within the scene, followed by the isolation of their signals through the use of beamformers. These sound objects are subsequently spatialized over the target playback setup, with respect to both the head orientation and position of the listener. The diffuse ambience of the scene is rendered separately by first spatially subtracting the source signals from the receivers located nearest to the listener position. The resultant residual Ambisonic signals are then spatialized, decorrelated, and summed together with suitable interpolation weights. The proposed system is evaluated through an in situ listening test conducted in 6DoF virtual reality,whereby real-world sound sources are compared with the auralization achieved through the proposed rendering method. The results of 15 participants suggest that in comparison to a linear interpolation-based alternative, the proposed object-based approach is perceived as being more realistic.

Open Access


JAES Volume 70 Issue 5 pp. 355-372; May 2022
Publication Date:

Download Now (676 KB)

This paper is Open Access which means you can download it for free.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society