Community

AES Journal Forum

Sparse Iterative Beamforming Using Spherical Microphone Arrays for Low-Latency Direction of Arrival Estimation in Reverberant Environments

Document Thumbnail

Acoustic direction of arrival estimation methods allows positional information about sound sources to be transmitted over a network using minimal bandwidth. For these purposes,methods that prioritize low computational overhead and consistent accuracy under non-ideal conditions are preferred. The estimation method introduced in this paper uses a set of steered beams to estimate directional energy at sparsely distributed orientations around a spherical microphone array. By iteratively adjusting beam orientations based on the orientation of maximum energy, an accurate orientation estimate of a sound source may be produced with minimal computational cost. Incorporating conditions based on temporal smoothing and diffuse energy estimation further refines this process. Testing under simulated conditions indicates favorable accuracy under reverberation and source discrimination when compared with several other contemporary localization methods. Outcomes include an average localization error of less than 10? under 2 s of reverberation time (T60) and the potential to separate up to four sound sources under the same conditions. Results from testing in a laboratory environment demonstrate potential for integration into real-time frameworks.

Authors:
Affiliations:
JAES Volume 69 Issue 12 pp. 967-977; December 2021
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society