AES Journal Forum

Influence of the Listening Environment on Recognition of Immersive Reproduction of Orchestral Music Sound Scenes

Document Thumbnail

This study investigates how a listening environment (the combination of a room's acoustics and reproduction loudspeaker) influences a listener's perception of reproduced sound fields. Three distinct listening environmentswith different reverberation times and clarity indices were compared for their perceptual characteristics. Binaural recordings were made of orchestral music, mixed for 22.2 and 2-channel audio reproduction, within each of the three listening rooms. In a subjective listening test, 48 listeners evaluate these binaural recordings in terms of overall preference and five auditory attributes: perceived width, perceived depth, spatial clarity, impression of being enveloped, and spectral fidelity. Factor analyses of these five attribute ratings show that listener perception of the reproduced sound fields focused on two salient factors, spatial and spectral fidelity, yet the attributes' weightings in those two factors differs depending on a listener's previous experience with audio production and 3D immersive audio listening. For the experienced group, the impression of being enveloped was the most salient attribute, with spectral fidelity being the most important for the non-experienced group.

Open Access


JAES Volume 69 Issue 11 pp. 834-848; November 2021
Publication Date:

Download Now (525 KB)

This paper is Open Access which means you can download it for free.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society