A modeling system for the impulse responses (IRs) of reverberators is presented. The overarching purpose of this system is to offer similar levels of control over captured IRs to that of algorithmic reverberators while retaining their acoustic plausibility and, where desired, realism. Specifically an approach to estimating the parameters of the model is presented that offers a significant reduction in the computational requirements of the matrix decomposition method ESPRIT, while offering vastly improved quality than is possible by using a single Fourier analysis. These methods are compared, first on large sets of short-duration synthetic signals and then on a wide range of typical IRs, some many seconds in duration. Finally systems that employ the model described and the analysis method it uses are discussed.
Author:
Wells, Jeremy J.
Affiliation:
Department of Music, University of York, UK
JAES Volume 69 Issue 7/8 pp. 530-541; July 2021
Publication Date:
July 2, 2021
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.