Community

AES Journal Forum

The Evolution and Design of Flat-Panel Loudspeakers for Audio Reproduction

Document Thumbnail

The underlying physics and the design of loudspeakers that radiate sound through the bending vibrations of elastic panels, here referred to generically as flat-panel loudspeakers, are reviewed in this paper. The form factor, reduced weight, and aesthetic appeal of flat-panel speakers have made them a topic of interest for more than 90 years, but these advantages have been overshadowed by acoustical shortcomings, specifically the uneven frequency response and directivity in comparison to conventional cone-radiator loudspeakers. Fundamentally, the design challenges of flat-panel speakers arise from the intrinsically large number of mechanical degrees of freedom of a panel radiator. A number of methods have been explored to compensate for the acoustical shortcomings of flat-panel speakers, such as employing inverse filters, equalization, canceling mechanical resonances with actuator arrays, and modifying the panel material, shape, structure, and boundary conditions. Such methods have been used in various combinations to achieve significant audio performance improvements, and carefully designed flat-panel loudspeakers have been rated in blind listening tests as competitive with some prosumer-grade conventional loudspeakers. This review presents a brief historical account of the evolution of flat-panel loudspeakers and summarizes the essential physics and design methodologies that have been developed to optimize their fidelity and directional response.

Authors:
Affiliations:
JAES Volume 69 Issue 1/2 pp. 27-39; January 2021
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society