AES Journal Forum

A Method for Spatial Upsampling of Voice Directivity by Directional Equalization

Document Thumbnail

To describe the sound radiation of the human voice into all directions, measurements need to be performed on a spherical grid. However, the resolution of such captured directivity patterns is limited and methods for spatial upsampling are required, for example by interpolation in the spherical harmonics (SH) domain. As the number of measurement directions limits the resolvable SH order, the directivity pattern suffers from spatial aliasing and order-truncation errors. We present an approach for spatial upsampling of voice directivity by spatial equalization. It is based on preprocessing, which equalizes the sparse directivity pattern by spectral division with corresponding directional rigid sphere transfer functions, resulting in a time-aligned and spectrally matched directivity pattern that has a significantly reduced spatial complexity. The directivity pattern is then transformed into the SH domain, interpolated to a dense grid by an inverse spherical Fourier transform and subsequently de-equalized by spectral multiplication with corresponding rigid sphere transfer functions. Based on measurements of a dummy head with an integrated mouth simulator, we compare this approach to reference measurements on a dense grid. The results show that the method significantly decreases errors of spatial undersampling and this allows a meaningful high-resolution voice directivity to be determined from sparse measurements.

JAES Volume 68 Issue 9 pp. 649-663; September 2020
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society