In many sound synthesis applications, once the salient properties of a sound source are defined, equalization is undertaken in order to fit it to the musical context. This is normally done by linear filters.When the sound synthesis algorithm, however, is as flexible as a physical model, Computational Sound Design techniques can be employed to perform offline equalization at the model level, saving real-time computational resources. In this work we extend the use of a recently proposed algorithm, MORIS, to equalize the harmonic content of a synthesized sound obtained by physical modeling according to equalization curves. We evaluate the effectiveness of the approach by considering an open-source clarinet model and pipe organ physical model, comparing our results with those obtained by online filtering and showing the advantages of the new method.
Authors:
Gabrielli, Leonardo; Tomassetti, Stefano; Squartini, Stefano
Affiliation:
Università Politecnica delle Marche, Ancona, Italy
JAES Volume 68 Issue 5 pp. 364-376; May 2020
Publication Date:
June 17, 2020
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.