AES Journal Forum

Identification of Nonlinear Fractional Derivative Loudspeaker Model

Document Thumbnail

Fractional derivative loudspeaker model describes the physical mechanism of eddy current losses in the voice coil and visco- elasticity of the suspension, which simplifies existing lumped parameter models containing creep and inductance corrections and makes more accurate predictions of loudspeaker dynamics. However, research on nonlinear fractional derivative model stays at the simulation level due to the difficulty in measuring the nonlinear parameters. In this paper, an identification algo- rithm is proposed to address this problem. All model parameters including four nonlinear parameters can be precisely identi- fied based on two small-signal characteristic curves and electrical data under large-signal conditions. Objective experimental indicators confirm the validity of the proposed algorithm, and the reason why nonlinear fractional derivative model performs better is analyzed.

JAES Volume 68 Issue 5 pp. 355-363; May 2020
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society