Community

AES Journal Forum

Evaluation of the Momentary Time Scale for Live Loudness Metering

Document Thumbnail

Different ballistic definitions for the momentary time scale used in live loudness measurement were evaluated. Definitions from the ITU and EBU were compared as well as a faster version of the ITU version, two asymmetric time scales and the deprecated ballistics, defined in EBU Tech 3205-E, for peak program meters. The goal was to identify the ballistics definition that would function as the best complementary tool to a short-term time scale. Engineers within the broadcast industry and students in audio technology performed an audio alignment task in a simulated live broadcast environment using one ballistics definition per trial. Fader movements and output levels were recorded. After each trial, a set of assessment scales were rated by the subjects. Some results were: a decay time constant of 250 ms yielded better representation of the low-level parts of the dynamics in the signal compared to a 400-ms time constant; the present ITU version of the momentary time scale yielded an estimated less eye fatigue; effects on the resulting output levels, related the gate in ITU-R BS.1770 in conjunction with live compensation of unadjusted audio material were shown.

Authors:
Affiliation:
JAES Volume 68 Issue 3 pp. 193-222; March 2020
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society