Community

AES Journal Forum

An Automatic Design Procedure for Low-order IIR Parametric Equalizers

Document Thumbnail

Parametric equalization of an acoustic system aims to compensate for the deviations of its response from a desired target response using parametric digital filters. An optimization procedure is presented for the automatic design of a low-order equalizer using parametric infinite impulse response (IIR) filters, specifically second-order peaking filters and first-order shelving filters. The proposed procedure minimizes the sum of square errors between the system and the target complex frequency responses instead of the commonly used difference in magnitudes, and exploits a previously unexplored orthogonality property of one particular type of parametric filter. This brings a series of advantages over the state-of-the-art procedures, such as (1) an improved mathematical tractability of the equalization problem, with the possibility of computing analytical expressions for the gradients, (2) an improved initialization of the parameters, including the global gain of the equalizer, (3) the incorporation of shelving filters in the optimization procedure, and (4) a more accentuated focus on the equalization of the more perceptually relevant frequency peaks. Examples of loudspeaker and room equalization are provided, as well as a note about extending the procedure to multipoint equalization and transfer function modeling.

Authors:
Affiliations:
JAES Volume 66 Issue 11 pp. 935-952; November 2018
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society