Line source arrays (LSAs) are used for large-scale sound reinforcement that synthesizes homogeneous sound fields over the full audio bandwidth. The deployed loudspeaker cabinets are rigged with different tilt angles and are electronically controlled to provide the intended coverage of the audience zones and to avoid radiation toward the ceiling, reflective walls, or residential areas. In this article, a mixed analytical-numerical approach, referred to as line source array venue slice drive optimization (LAVDO), is introduced for optimizing the individual loudspeakers’ driving functions. This method is compared to numerical optimization schemes, including least-squares and multi-objective goal attainment approaches. For two standard LSAs in straight and in curved configuration, these temporal frequency domain optimizations are performed for a typical concert venue. It is shown that LAVDO overcomes the nonsmooth frequency responses resulting from numerical frequency domain approaches. LAVDO provides smooth amplitude and phase responses of the loudspeakers’ driving functions that are essential for practical finite impulse response filter design and implementation.
Authors:
Straube, Florian; Schultz, Frank; Makarski, Michael; Weinzierl, Stefan
Affiliations:
Audio Communication Group, TU Berlin, Berlin, Germany; Institute for Acoustics and Audio Technique, Würselen, Germany(See document for exact affiliation information.)
JAES Volume 66 Issue 9 pp. 690-702; September 2018
Publication Date:
September 16, 2018
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.