Community

AES Journal Forum

Localization Experiments with Reporting by Head Orientation: Statistical Framework and Case Study

This research focuses on sound localization experiments in which subjects report the position of an active sound source by turning toward it. A statistical framework for the analysis of the data is presented together with a case study from a large-scale listening experiment. The statistical framework is based on a model that is robust to the presence of front/back confusions and random errors. Closed-form natural estimators are derived, and one-sample and two-sample statistical tests are described. The framework is used to analyze the data of an auralized experiment undertaken by nearly nine hundred subjects. The objective was to explore localization performance in the horizontal plane in an informal setting and with little training, which are conditions that are similar to those typically encountered in consumer applications of binaural audio. Results show that responses had a rightward bias and that speech was harder to localize than percussion sounds, which are results consistent with the literature. Results also show that it was harder to localize sound in a simulated room with a high ceiling despite having a higher direct-to-reverberant ratio than other simulated rooms.

Open Access

Open
Access

Authors:
Affiliations:
JAES Volume 65 Issue 12 pp. 982-996; December 2017
Publication Date:


Download Now (750 KB)

This paper is Open Access which means you can download it for free.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society