AES Journal Forum

A Fifty-Node Lebedev Grid And Its Applications To Ambisonics

Document Thumbnail

Physical reconstruction or synthesis of three-dimensional sound fields can be implemented with Near Field Compensated Higher Order Ambisonics. This paper investigates the use of a fifty-node Lebedev grid, which is derived from rotationally-invariant quadrature rules. Special attention is paid to spatial aliasing artifacts at the capture and reproduction steps. While comparing a fifty-node Lebedev grid with a Fliege and a t-design grid that both use almost the same number of nodes, it is shown that the Lebedev grid provides the best performance in terms of sound field capture and reproduction. Finally, a multiband multiorder decoder is presented. These decoders take advantage of the inherent nested subgrids when following the rotationally-invariant quadrature approach. The importance of orthonormality of the spherical harmonics was highlighted in a context of physical encoding or reconstruction of a sound field with the Ambisonics approach. Simulation results are provided for the case of a three-band decoder using the three grids contained in the Lebedev grid. It was found that a multifrequency sound field can be reproduced accurately in the sweet-spot by using a combination of low-order decoder for low frequency and higher-order decoder for higher frequency.

JAES Volume 64 Issue 11 pp. 868-881; November 2016
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society