Community

AES Journal Forum

Reducing Transformerless Microphone Preamplifier Noise at Low Gain Settings

Document Thumbnail

Contemporary high-quality condenser microphones offer noise performance close to the theoretical limit. Because large-diaphragm capsules and transformerless electronics have a high sensitivity, only modest gain from the preamplifier is required. Yet, designers of microphone preamplifiers have traditionally focused on the noise performance at highest gain, where the equivalent input noise (EIN) is at a minimum. At lower gain settings this figure worsens by an amount that depends on the detailed implementation, and may dominate the noise of the microphone. The EIN at highest gain is an insufficient and possibly even misleading criterion. The author presents a detailed noise analysis of the classic current-feedback instrumentation amplifier topology. The collector load resistors and the voltage noise of the operational amplifiers were identified as significant noise sources at low-gain settings. Connecting the collector load resistors to a higher supply rail is an effective technique for reducing the magnitude of the noise sources. Practical verification was found to be in excellent agreement with the predicted performance.

Author:
Affiliation:
JAES Volume 63 Issue 3 pp. 184-190; March 2015
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this report yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this report you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this report and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this report then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society