There are two common approaches to the design of IIR filters: (a) match the complex frequency response (magnitude-phase) or, equivalently, the impulse response, or (b) minimize only the magnitude error while ignoring the phase response. This research describes a third approach, called magnitude-priority filter design, which merges the two methods. If possible the algorithm matches the complex response, and when not possible it transitions to magnitude only criteria. This is especially useful with quasi-logarithmic frequency-resolution filters because the frequency-dependent windowing of the impulse response requires the high-frequency attenuation to be corrected. Since the magnitude-priority method does not make any assumption about the core design algorithm, this method can be combined with any technique that attempts to match the complex transfer function or impulse response.
Author:
Bank, Balázs
Affiliation:
Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
JAES Volume 62 Issue 7/8 pp. 485-492; July 2014
Publication Date:
August 22, 2014
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.