Community

AES Journal Forum

Beamforming Regularization, Scaling Matrices, and Inverse Problems for Sound Field Extrapolation and Characterization: Part I — Theory

Document Thumbnail

The underlying hypothesis in spatial sound reproduction technologies is that a listener immersed in a physical reconstruction of a target sound field will experience the appropriate perception over a large listening area. The aim of this paper is twofold: to develop and describe a method of spatial sound field extrapolation (SFE) based on microphone array measurements of arbitrary geometry, and to develop and define a sound field characterization method and a sound field classification based on known objective and subjective metrics. To achieve SFE, a recently developed method was proposed and further analyzed. Once SFE was achieved, the inverse problem solution was investigated to evaluate different sound field metrics: energy density, sound intensity, direction of arrival, diffuseness, velocity vector, energy vector, directional energy, interaural time difference, incident directivity factor, incident directivity index, and directional diffusion.

Authors:
Affiliations:
JAES Volume 62 Issue 3 pp. 77-98; March 2014
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society