To facilitate communications among passengers in a large vehicle, an appropriate system with microphones, loudspeakers, and amplifiers is needed. However, a signal processing algorithm is required to avoid feedback and instability. Borrowing from speech-reinforcement research, the authors use a room-modeling adaptive feedback-cancellation approach that combines the Prediction Error Method and adaptive filtering. And, by including a suppressor filter, the system can be extended to a dual-channel scenario that supports bidirectional communications, where additional feedback paths must be considered with respect to the single-channel case study. In order to achieve low latencies and real-time processing, the partitioned block frequency domain adaptive filter algorithm has been adopted. Voice-activity and double-talk detectors have been included as well. Computer simulations in various acoustic conditions have shown the effectiveness of this approach.
Authors:
Faccenda, Francesco; Squartini, Stefano; Principi, Emanuele; Gabrielli, Leonardo; Piazza, Francesco
Affiliation:
3MediaLabs - DII - Universitá Politecnica delle Marche, Ancona, Italy
JAES Volume 61 Issue 11 pp. 889-910; November 2013
Publication Date:
November 26, 2013
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.