Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Perceived Audio Quality of Realistic FM and DAB+ Radio Broadcasting Systems

The perceived audio quality of a digital broadcasting system (such as DAB+) is dependent on the type of coding and bit rates selected. Because of bandwidth constraints, the required number of channels, and conflicting auxiliary services, audio quality is sometimes degraded. In designing a broadcast system, it is necessary to have well-defined criteria for minimally acceptable quality. Two studies explored quality criteria and how quality degrades for various bit rates. For DAB+ the subchannel rate should not be less than the currently available maximum of 192 kbits/s for a stereo signal, which would be comparable to the quality of a modern FM system. Rates below 160 kbit/s can significantly degrade certain types of program material. To be truly perceptually transparent, bits rates of close to 300 kbits/s may be needed when using the current generation of coders.

Authors:
Affiliations:
JAES Volume 61 Issue 10 pp. 755-777; October 2013
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society