Community

AES Journal Forum

Physical Modeling of Timpani Drums in 3D on GPGPUs

Document Thumbnail

With the rapid advances in the processing power of parallel special purpose hardware, it is now possible to create models of instruments embedded in a full 3D environment. This paper explores a test case of a timpani drum using finite difference time-domain methods, which are particularly suitable for parallelized hardware. Processing limitations usually required a simplification of the timpani model as a linear membrane and cavity under low striking amplitudes. Using the Nvidia Tesla architecture, the model of the timpani drum can the include high-impact nonlinearity of the membrane and the air, as well as the nonuniform tension of the membrane. In addition, 3D synthesis of the entire acoustic space is possible. Matlab code was ported to Nvidia’s native language without significant optimization, which still results in high-speed processing.

Authors:
Affiliation:
JAES Volume 61 Issue 10 pp. 737-748; October 2013
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society