Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Multiport Acoustic Models with Applications in Audio Signal Processing

Two-port and multiport models, which are used in electrical engineering, optics, and photonics, can be also be used to characterize acoustics elements as linear time-invariant models. This paper presents an overview of such acoustic elements in signal processing applications. For example, a cascade of two-port elements can be used to model an expansion chamber, exponential horn, or audio filter. Similarly, waveguides (with and without loss), terminations, and multiport junctions can be used to model state space filters and feedback delay networks. The ability to see a system as a network of waveguides and junctions can provide some insight that may not be evident in equations and code. Audio signal processing algorithms can be constructed using two-port and multiport building blocks. Both frequency domain and discrete time domain analyses are included along with notes for MATLAB implementations

Author:
Affiliation:
JAES Volume 61 Issue 10 pp. 727-736; October 2013
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society