Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Minimization of Decorrelator Artifacts in Directional Audio Coding by Covariance Domain Rendering

Directional Audio Coding (DirAC) is a perceptually motivated microphone technique that models the sound field as a combination of a plane wave and a surrounding diffuse field with a time–frequency resolution that approximates that of the human spatial hearing. In this paper a recently proposed covariance domain spatial-sound rendering method was applied to optimize the DirAC reproduction by minimizing the amount of the decorrelated sound energy. When several semi-independent microphone signals were available, this procedure was shown to improve the overall perceived sound quality, especially with audio content that has an impulsive fine structure, such as applause and speech. In all tests, the covariance rendering method performed similarly or better than the legacy rendering method, making it the preferred choice for performing DirAC synthesis.

Open Access

Open
Access

Authors:
Affiliation:
JAES Volume 61 Issue 9 pp. 637-646; September 2013
Publication Date:


Download Now (477 KB)

This paper is Open Access which means you can download it for free.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society