AES Journal Forum

Higher-Order Integrated Wavetable and Sampling Synthesis

Document Thumbnail

Wavetable and sampling synthesis enable the playback of arbitrary sounds, including those with a rich harmonic structure, without increasing the computational complexity. Although resampling allows for changing the pitch of a stored sample, there are artifacts. In particular, increasing the pitch is susceptible to disturbing aliasing artifacts. A novel approach to reduce aliasing, which is based on an integrated wavetable and a differentiation of the output signal, has been proposed previously by Geiger. This paper extends Geiger’s method by integrating the waveform multiple times before storing it, and during playback a sample rate conversion method is applied and the output signal is then differentiated as many times as the wavetable has been integrated. With only a minor increase in computational cost, the use of higher-order filtering reduces aliasing more than first-order techniques.

JAES Volume 61 Issue 9 pp. 624-636; September 2013
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society