This research proposes a generalized and optimized framework for time–frequency processing of spatial audio using a signal covariance matrix. This framework is relevant for a wide variety of spatial applications, such as perceptual spatial coding, stereo upmixing, decorrelation, and so on. The matrix, which represents interchannel dependencies, is perceptually relevant for the transmission of the listener’s spatial experience. In a typical application, the original time–frequency covariance matrix is transformed into the target matrix, optimizing the sound quality using a least mean square metric. In an example of upmixing stereo music, informal listening tests confirmed the validity of the framework.
Authors:
Vilkamo, Juha; Bäckström, Tom; Kuntz, Achim
Affiliations:
Aalto University, Espoo, Finland; Fraunhofer IIS, Erlangen, Germany(See document for exact affiliation information.)
JAES Volume 61 Issue 6 pp. 403-411; June 2013
Publication Date:
July 8, 2013
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.