Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Digital Waveguide Synthesis of the Geomungo with a Time-Varying Loss Filter

Physical models of musical instruments are often the basis for computer synthesis of the sound when played. By manipulating control parameters of the model to mimic the performer’s actions, a good imitation of the music can be achieved. A digital waveguide synthesis of the geomungo, a Korean traditional plucked string instrument, must take into account the fact that vigorous playing techniques produce extreme vibrato with a noticeably fluctuating in the decay of the harmonics. To model pitch fluctuation and the decay characteristics of its harmonic partials, a time-varying loss filter with a sinusoidal loop gain is used. The model uses a generalized form of the Karplus-Strong algorithm with a one-pole filter to model loss, and a Lagrange interpolation filter to implement the fundamental frequency. A real-time system shows the potential for creating a virtual geomungo.

Authors:
Affiliation:
JAES Volume 61 Issue 1/2 pp. 50-61; January 2013
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society