Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Persistent Time-Frequency Shrinkage for Audio Denoising

In many audio processing applications, signals are represented by linear combinations of basis functions (such as with windowed Fourier transforms) that are collected in so-called dictionaries. These are considered well adapted to a particular class of signals if they lead to sparse representations, meaning only a small number of basis functions are required for good approximation of signals. Most natural signals have strong inherent structures, such as harmonics and transients, a fact that can be used for adapting audio processing algorithms. This paper considers the audio-denoising problem from the perspective of structured sparse representation. A generalized thresholding scheme is presented from which simple audio-denoising operators are derived. They perform equally well compared to state-of-the-art methods while featuring significantly less computational costs.

Authors:
Affiliations:
JAES Volume 61 Issue 1/2 pp. 29-38; January 2013
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society