Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Development and Validation of an Unintrusive Model for Predicting the Sensation of Envelopment Arising from Surround Sound Recordings

An objective prediction model for the sensation of sound envelopment in five-channel reproduction is important for evaluating spatial quality. Regression analysis was used to map the listening test scores on a variety of audio sources and the objective measures extracted from the recordings themselves. By following an iterative process, a prediction model with five features was constructed. The validity of the model was tested in a second set of subjective scores and showed a correlation coefficient of 0.9. Among the five features: sound distribution and interaural cross-correlation contributed substantially to the sensation of envelopment. The model did not require access to the original audio. Scales used for listening tests were defined by audible anchors.

Authors:
Affiliations:
JAES Volume 58 Issue 12 pp. 1013-1031; December 2010
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society