Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

System for Automatic Singing Voice Recognition

A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing.

Authors:
Affiliation:
JAES Volume 56 Issue 9 pp. 710-723; September 2008
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society