Community

AES Journal Forum

Implementing Asymmetrical Crossovers

Document Thumbnail

Crossovers are often described in terms of symmetrical pairs of high- and low-pass filters with a common denominator, usually Butterworth, double Butterworth (Linkwitz-Riley), or notched. The native response of the usual closed-back tweeter is second-order high-pass, but its cone excursion goes to a compliance-limited maximum at frequencies below its cutoff. It therefore needs further high-pass filtering to prevent excessive power dissipation and cone excursion produced by components of the program signal at frequencies lower than its passband. Thus the overall high-pass transfer function must be of at least third order, and preferably higher. In the low-pass channel, on the other hand, such high-order filtering is often unnecessary, so the cost and complexity of the crossover can be reduced significantly by using an asymmetrical crossover. Various possibilities are explored, with comments on their advantages and disadvantages compared with symmetrical systems.

Author:
Affiliation:
JAES Volume 55 Issue 10 pp. 819-832; October 2007
Publication Date:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society