Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

A Digital Plate Reverberation Algorithm

A digital artificial reverberation algorithm is presented, based on a full-time domain simulation of plate vibration. As such it may be considered to be a physical model plate reverberation, a popular means of processing audio signals in the days of analog production. A small number of parameters are available to the user, to be used to tune the plate response, in a means analogous to that for the acoustic plate reverberation unit. Such parameters include stiffness, aspect ratio, tension, and two-parameter loss. A variety of other possibilities are opened up, including multichannel input and output, possibly over time-varying locations, and various types of boundary termination. The complete numerical method is presented, along with a discussion of implementation details and computational complexity (which is near real time). Numerical results and sound examples are also presented.

Author:
Affiliation:
JAES Volume 55 Issue 3 pp. 135-144; March 2007
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society