Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Equalization in an Extended Area Using Multichannel Inversion and Wave Field Synthesis

Wave field synthesis (WFS) targets the synthesis of the physical characteristics of a sound field in an extended listening area. This synthesis is, however, accompanied by noticeable reconstruction artifacts. They are due to both loudspeaker radiation characteristics and approximations to the underlying physical principles. These artifacts may introduce coloration, which must be compensated for over the entire listening area. Multichannel equalization techniques allow for the control of the sound field produced by a loudspeaker array at a limited number of positions. The control can be extended to a large portion of space by employing a new method that combines multichannel equalization with a linear microphone array–based description of the sound field and accounts for WFS rendering characteristics and limitations. The proposed method is evaluated using an objective coloration criterion. Its benefits compared to conventional equalization techniques are pointed out for both ideal omnidirectional loudspeakers and multi-actuator panels.

Author:
Affiliations:
JAES Volume 54 Issue 12 pp. 1140-1161; December 2006
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society