Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

A Hybrid Technique for Validating Unidimensionality of Perceived Variation in a Spatial Auditory Stimulus Set

Signal-processing algorithms that are meant to evoke a certain subjective effect often have to be perceptually equalized so that any unwanted artifacts are, as far as possible, eliminated. They can then be said to exhibit “unidimensionality of perceived variation.” Aiming to design a method that allows unidimensionality of perceived variation to be verified, established sensory evaluation approaches are examined in terms of their suitability for detailed, undistorted profiling and hence reliable validation of an algorithm’s subjective effects. It is found that a procedure combining multidimensional scaling with supplementary verbal elicitation constitutes the most appropriate approach. In the context of validating a signal-processing method intended to produce a specific spatial effect, this procedure is evaluated and some shortcomings are identified. However, following refinements, it is concluded that these can be overcome through additional data collection and analysis, resulting in a multistage hybrid validation technique.

Authors:
Affiliation:
JAES Volume 54 Issue 4 pp. 259-275; April 2006
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society