Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Directional Resolution of Head-Related Transfer Functions Required in Binaural Synthesis

In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured and interpolations are made in between. A listening experiment was done to estimate the lowest directional resolution with which HRTFs have to be measured to ensure that interpolations between them do not introduce audible errors. In order to make this study the HRTFs of an artificial head were measured with a directional resolution of 2°. The measurements were used to create HRTF data sets with low resolution from which interpolations were made in the horizontal, frontal, and median planes. Measured and interpolated HRTFs were compared in a three-alternative forced-choice listening experiment for both stationary and moving sound sources. A criterion was found that predicts the experimental results. This criterion was used to estimate the directional resolution required in binaural synthesis for all directions on the sphere around the head.

Authors:
Affiliation:
JAES Volume 53 Issue 10 pp. 919-929; October 2005
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society