Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Room Sizing and Optimization at Low Frequencies

Modes in small rooms may lead to uneven frequency responses and extended sound decays at low frequencies. In critical listening environments, this often causes unwanted coloration effects, which can be detrimental to the sound quality. Choosing an appropriately proportioned room, and placing listener and loudspeakers in the right places can reduce the audible effects of modes. A new methodology is detailed for determining the room dimensions for small critical listening spaces as well as the optimum positions for sources and receivers. It is based on numerical optimization of the room geometry and layout to achieve the flattest possible frequency response. The method is contrasted with previous techniques for choosing room dimensions. The variations of the room quality for different room sizes are mapped out. These maps include an allowance for constructional variation, which has not been considered previously.

Authors:
Affiliations:
JAES Volume 52 Issue 6 pp. 640-651; June 2004
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society