Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Journal Forum

Modal Equalization of Loudspeaker - Room Responses at Low Frequencies

The control of excessively long decays in a listening room with strong low-frequency modes is problematic, expensive, and sometimes impossible with conventional passive means. A systematic methodology is presented to design active modal equalization able to selectively reduce the mode decay rate of a loudspeaker-room system at low frequencies in the vicinity of a sound engineer's listening location. Modal equalization is able to increase the rate of initial sound decay at mode frequencies, and can be used with conventional magnitude equalization to optimize the reproduced sound quality. Two methods of implementing active modal equalization are proposed. The first modifies the primary sound such that the mode decay rates are controlled. The second uses separate secondary radiators and controls the mode decays with additional sound fed into the secondary radiators. Case studies are presented of implementing active modal control according to the first method.

Authors:
Affiliations:
JAES Volume 51 Issue 5 pp. 324-343; May 2003
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society