Graphene oxide-based materials have shown promise in loudspeaker membrane applications. The material allows the forming of highly stiff, low mass cones and domes for loudspeakers. The technology allows improvements in efficiency and linearity over other common loudspeaker membrane materials. This class of graphene material can be engineered to produce an excellent ratio of stiffness (Young’s modulus) to density (g/cm3) and damping (tan ? ). In a case study, acoustically optimized graphene materials were formed into membranes for headphone drivers. The performance of headphone drivers made with these membranes was analyzed and compared to standard polymer membrane headphone drivers. Relative to the polymer membrane drivers, the graphene membranes provide a significant reduction in both intermodulation and harmonic distortion while matching the sensitivity and producing a substantially smoother frequency response.
Authors:
Cardenas, William; Gaskell, Robert-Eric
Affiliations:
ORA Graphine Audio Inc., Montreal, Quebec, Canada; McGill University, Montreal, QC, Canada(See document for exact affiliation information.)
AES Convention:
147 (October 2019)
eBrief:544
Publication Date:
October 8, 2019
Subject:
Transducers
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this paper yet.
To be notified of new comments on this paper you can
subscribe to this RSS feed.
Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.