Community

AES Engineering Briefs Forum

Flexible Control of the Transducer and the Duct Resonance of a Speaker System Ducted to the Exterior of a Vehicle Cabin

Document Thumbnail

In order to reproduce lower frequency sound in a vehicle cabin efficiently, Zeljko Velican proposed a speaker system, where the backside of a transducer unit communicates with the exterior of a vehicle cabin via a tuned acoustic appliance. [1] Since this speaker system couples the interior and the exterior of a vehicle cabin, the efficiency and the frequency range of internal and external noise transmission are both important considerations. These two characteristics are strongly correlated with the two dominant resonances of the system. One is the mechanical resonance of the transducer which defines the lower limit of the sound reproduction frequency range. Another one is the Helmholtz resonance of the back-side acoustic appliance (enclosure and duct), which defines the frequency where, for example, noise transmission through the appliance is optimized. Choosing the appropriate acoustic parameters to balance those two dominant resonances is the key to optimal design this speaker system. But with the existing configuration [1], these two dominant acoustic resonances have strong mutual interaction via coupled design parameters, it can be difficult to find a good compromise between them. In this paper, a new speaker system configuration, consists of a transducer, an enclosure ducted to the exterior of the vehicle cabin, and a passive radiator to cover the duct, will be proposed and discussed. With this configuration, the two dominant resonances of the system can be controlled quasi-individually, therefore enhancing design flexibility for the practical use of such systems on a vehicle.

Authors:
Affiliations:
AES Convention: eBrief:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society