Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Engineering Briefs Forum

Experiments with Dither in Level-Calibrated Floating Point Audio Processing

The use of dither to decorrelate quantization error in fixed point signal processing systems is a well-established practice in professional audio. Floating point computation, however, is quite common due to the ease of use and ubiquity of high performance platforms, among other reasons. Dither is (anecdotally) less frequently found in floating point audio systems, until the final mapping to fixed point representation, but quantization error occurs in the rounding operation during intermediate calculations. Widrow and others have provided detailed treatment of the quantization error in floating point audio calculations, and in the present work experiments using dither during the internal rounding operation in a floating point unit are compared to the external addition of noise when the signal levels are known to be calibrated from the original analog source.

Author:
Affiliation:
AES Convention: eBrief:
Publication Date:
Subject:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society