Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Engineering Briefs Forum

Printable Loudspeaker Arrays for Flexible Substrates and Interactive Surfaces

Although planar loudspeaker drivers have been well explored for many years, a flat speaker array system that may flex or fold freely remains a current challenge to engineer. We will demonstrate a viable technique for building large loudspeaker arrays that allow for diffused fields of sound transduction on flexible membranes. Planar voice coils are made from machine-cut copper sheets, or by inkjet printing and electroless copper plating, on paper, thin plastic, or similar lightweight material. We will present various ways of attaching thin magnets to these membranes, including a novel alternative strategy of mounting magnets in gloves worn by the listener. This creates an engaging experience for listeners in which gestures can control sounds from the speaker array interactively.

Authors:
Affiliation:
AES Convention: eBrief:
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society