Journal Forum

Perceptual Effects of Dynamic Range Compression in Popular Music Recordings - January 2014
4 comments

Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency - June 2013
9 comments

New Measurement Techniques for Portable Listening Devices: Technical Report - October 2013
1 comment

Access Journal Forum

AES Engineering Briefs Forum

A Comparison of Recording, Rendering, and Reproduction Techniques for Multichannel Spatial Audio

The objective of this project is to compare the relative merits of two different spatial audio recording and rendering techniques within the context of two different multichannel reproduction systems. The two recordings and rendering techniques are "natural," using main microphone arrays, and "virtual," using spot microphones, panning, and simulated acoustic delay. The two reproduction systems are the 3/2 system (5.1 surround), and a 12/2 system, where the frontal L/C/R triplet is replaced by a 12 loudspeaker linear array. Additionally, the project seeks to know if standard surround techniques can be used in combination with wavefront reconstruction techniques such as Wave Field Synthesis. The Hamasaki Square was used for the room effect in all cases, exhibiting the startling quality of increasing the depth of the frontal image.

Authors:
Affiliations:
AES Convention: eBrief:
Publication Date:

Click to purchase paper or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

 
Facebook   Twitter   LinkedIn   Google+   YouTube   RSS News Feeds  
AES - Audio Engineering Society