Community

AES Convention Papers Forum

A Comparison of Computational Methods for Instantaneous Frequency and Group Delay of Discrete-Time Signals

Document Thumbnail

A unified treatment of various computational methods for estimating the instantaneous frequency and group delay of discrete-time signals is given. Direct, phase-based methods are compared with the newer moment methods. Instantaneous frequency and group delay are related to certain moments of the signal or its Fourier transform. They are also first order moments of the Wigner-Ville distribution of the signal. Because instantaneous frequency and group delay are mathematical duals of one another, an algorithm suitable for estimating one can be used, with a simple interchange of time and frequency variables, to estimate the other. The performance of these several different methods is assessed by applying them to a wide variety of representative test signals such as, for example, chirps, tone bursts, as well as more complicated signals such as linear-phase bandpass, minimum-phase lowpass, and allpass filter responses. Generally, the moment methods are superior to the phase-based methods because they avoid phase unwrapping errors and approximate digital differentiations. Instantaneous frequency and group delay time can be useful in identifying the moment-to-moment frequency content of an evolving signal and the arrival time of frequency components of the signal's spectrum, respectively.

Authors:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society