Community

AES Convention Papers Forum

Computer Simulation, Analysis of Predistortion, Adaptive Equalization of Digital Satellite and Digital Microwave Radio Systems with Nonlinear Transmit Amplifiers and with Multipath Propagation

Document Thumbnail

In this paper, we analyze the performance of predistortion and adaptive equalization to compensate for the nonlinearity of satellite and digital radio channels with multipath propagation (Rummler's model) and additive noise. The study is carried out using 8-PSK, 16-PSK, 32-PSK, 16-QAM, 64-QAM, and 256-QAM modulation. In the transmitter and receiver, Butterworth's digital filters were simulated. Included in the analysis are several types of TWTA tubes (having AM/AM and AM/PM characteristic approximations with up to 7th order polynoms) and predistortion circuits. In the receiver, we simulated the following equalizers: a) linear; b) fractionally spaced; c) decision feedback; d) nonlinear adaptive, proposed by Falconer (for MQAM); and e) nonlinear adaptive, proposed by Benedetto and Biglieri (for MPSK). The nonlinear theory of Norbert Wiener (i.e., Vito Volterra) and an LMS algorithm for the coefficient tap adjust of the equalizer has been proposed. Our research indicates that the Block update algorithm is better for real-time applications because it reduces the processing complexity of the computation of the equalizer coefficients in each symbol interval. In addition, the required number of coefficients of the equalizer can be reduced from that needed for the original Wiener algorithm.

Author:
Affiliation:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society