Characterizing acoustic spaces is important for multiple applications, from architectural acoustics to augmented and virtual reality, sound design, and others. Traditionally, this process involves making impulse response measurements in an unoccupied space, which is time consuming and potentially inaccurate because the acoustics of spaces may be affected significantly by the presence of an audience or other occupants. The ability to “blindly” retrieve acoustic information about a space from recordings made during typical use scenarios would be more practical and potentially it could provide a more accurate picture of the acoustics of the space when partially or fully occupied. In this paper we discuss how an analysis of the coherence properties of the harmonic partials of naturally occurring speech and music signals recorded in a space may provide information about the impulse response of the space. A broad class of naturally occurring sounds, such as speech and music, contain sets of harmonically related overtones with mutually correlated amplitude and phase modulations, i.e., vibrato. This is a reasonable assumption based upon the physics of sound generation in many realistic sources, such as wind musical instruments or the human vocal tract. When such acoustic signals are filtered by a space, we show how the autocorrelation of individual overtones and the cross-correlation between pairs of harmonically related overtones can provide information about the impulse response of the space. In this paper we explore this hypothesis by analyzing a few simplified cases and we discuss how these methods may be extended to more complex, and realistic, scenarios.
Authors:
Driscoll, Erin; Bocko, Mark; Smith, Sarah
Affiliation:
University of Rochester, NY, USA
AES Convention:
154 (May 2023)
Paper Number:
10655
Publication Date:
May 13, 2023
Subject:
Room Acoustics
Click to purchase paper as a non-member or you can login as an AES member to see more options.
No AES members have commented on this Room Acoustics yet.
To be notified of new comments on this Room Acoustics you can subscribe to this RSS feed. Forum users should login to see additional options.
If you are not yet an AES member and have something important to say about this Room Acoustics then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.