Community

AES Convention Papers Forum

3D Impulse Response Convolution with Multichannel Direct Sound: Assessing Perceptual Equivalency between Room- and Source- Impression for Music Production

Document Thumbnail

A method for representing the three-dimensional radiation patterns of instruments/performers within artificial reverberation using multichannel direct sound files convolved with channel-based spatial room impulse responses (SRIRs) is presented. Two reverb conditions are studied in a controlled listening test: a) all SRIR channel positions are convolved with a single monophonic direct sound file, and b) each SRIR channel position is convolved with a unique direct sound file taken from a microphone array surrounding the performer. Participants were asked to adjust the level of each reverberation condition (relative to a fixed direct sound stream) to three perceptual thresholds relating to source- and room- impression. Results of separate three-way within-subject ANOVAs and post-hoc analysis show significant interactions between instrument / room type, and instrument / reverb condition on each of the three thresholds. Most notably, reverb condition b) required less level than condition a) to yield perceptual equivalency between source- and room- impression, suggesting that the inclusion of multichannel direct sound in SRIR convolution may increase the salience of room impression in the immersive reproduction of acoustic music.

Authors:
Affiliations:
AES Convention: Paper Number:
Publication Date:
Subject:

Click to purchase paper as a non-member or you can login as an AES member to see more options.

No AES members have commented on this paper yet.

Subscribe to this discussion

RSS Feed To be notified of new comments on this paper you can subscribe to this RSS feed. Forum users should login to see additional options.

Start a discussion!

If you would like to start a discussion about this paper and are an AES member then you can login here:
Username:
Password:

If you are not yet an AES member and have something important to say about this paper then we urge you to join the AES today and make your voice heard. You can join online today by clicking here.

AES - Audio Engineering Society